Unoptix's SFP-10G-ER is a Cisco SFP-10G-ER-S compatible transceiver and is factory pre-programmed with all the necessary configuration data for seamless network integration. Unoptix transceivers perform identically to Cisco original transceivers and are 100% compatible. The Cisco SFP-10G-ER-S compatible transceiver is 100% MSA (Multi-Source Agreement) compliant.
Unoptix understands the value of compatibility and interoperability to each optics.
Every module Unoptix provides must run through programming and an extensive series of platform diagnostic tests to prove its performance and compatibility.
All transceivers are tested in our test center before shipment for 100% functionality and guaranteed compatibility for outstanding network performance. Unoptix test facility comprises of a broad selection of original brand network equipments. Our skilled staff help our customers to make the most out of the network design.
Unoptix offers all brands and form factors of Transceivers for all networking needs, providing a reliable, compatible and affordable means to expand your network while maintaining its integrity.
Unoptix optical transceivers are compliant per the RoHS Directive 2011/65/EU.
FORM FACTOR |
SFP+ |
BANDWIDTH FROM |
600 Mbit/s |
CONNECTOR |
LC Duplex |
BANDWIDTH TO |
11.3 Gbit/s |
INTERFACE |
Singlemode |
LASER |
EML |
WAVELENGTH TX |
1550 nm |
RECEIVER TYPE |
PIN |
WAVELENGTH RX |
1550 nm |
WAVELENGTH TX MIN. |
1480nm |
DISTANCE |
40 km |
WAVELENGTH TX MAX. |
1600nm |
POWERBUDGET (DB) |
11.1 dB |
WAVELENGTH RX MIN. |
1260nm |
TRANSMIT MIN. |
-4.7 dBm |
WAVELENGTH RX MAX. |
1600nm |
RECEIVE MIN. |
-15.8 dBm |
TEMPERATURE RANGE |
0? - 70? |
TRANSMIT MAX. |
4 dBm |
DIGITAL DIAGNOSTIC MANAGEMENT (DDM) |
internally calibrated |
RECEIVE MAX. (RECEIVER OVERLOAD) |
-1 dBm |
TYPE |
ER |
PART NUMBER |
SFP-10G-ER |
EXTINCTION RATIO |
3.5 dB |
PROTOCOLS |
10G Ethernet, 10G FC, 8G Fibre Channel, LTE 7.373G CPRI, LTE 9.830G CPRI, Gigabit Ethernet, LTE 6.144G OBSAI, LTE 6.144G CPRI, LTE 4.915G CPRI, LTE 3.072G OBSAI, LTE 2.458G CPRI, LTE 1.536G OBSAI, LTE 1.22G CPRI, LTE 0.768G OBSAI, LTE 0.614G CPRI |
|
|
|
|
|
30 Days Return
|
Warranty
|
Availability
|
We offer 30 days risk free return |
Our products are backed by 5 years warranty |
Shipping from EU with DHL, Fedex, UPS |
Example Application
Unoptix SFP-10G-LR Application: Cisco-based Campus Network
![]()
The low-latency network architecture for campus networks is a two-tiered arrangement consisting of Access and Backbone switches, as depicted in the figure below. The rates of the various links and the size of the switches will vary depending on the size and topology of the campus.
Many current campus designs utilized 1GbE (1Gbps Ethernet) downlinks off the Access switches. This links typically connect to Wireless Access Points (APs), workstations, storage devices and the like. These links may be copper, 10/100/1000Base-T, or fiber. Depending on the distance required between the Access switch and whatever is being connected, these fiber links may be Single Mode (SMF) or Multimode (MMF). The links between the Access and Backbone switches are typically 10GbE and the interlinks between Backbone switches, 40G or 100G. The Access-Backbone links are usually 100% fiber and generally single mode.
Implementation Components
Cisco has a number of switch series designed for campus applications. They offer what they refer to as baseline switches which tend to be lower priced but with reduced feature sets. They also offer two full-featured switch alternatives. The Catalyst 9000 series is Cisco's most full featured product line but is the most expensive and taking advantage of all those features requires an end-to-end all Cisco network. In this example the middle choice, a switch line with most of the important features required on most campuses (1/10/40G Ethernet services, advanced security, MPLS, integrated analytics, advanced wireless AP management) is selected. The specific access and backbone switches selected are described below.
Access Switches
To create access switch two models from the Catalyst 3850 platform are selected, the WS-C3850-12S and the WS-3850-24XU. These two switches can be stacked using Cisco's proprietary stacking cable technology. Both these switches are available dual redundant power supplies. To add the 10GbE uplinks mentioned in the Architecture section above, Network Modules must be used. These modules plug into the rear of the two switches. In this design the C3850-NM-8-10G network module is used.
C3850-NM-8-10G
This Cisco module includes 8 SFP+ slots into which a wide full range of 10GbE SFP+ optical transceiver modules may be installed including: SFP-10G-SR, SFP-10G-LR, SFP-10G-ER and SFP-10G-ZR.
WS-C3850-12S
The WS-C3850-12S includes 12 SFP slots. These slots may be equipped with a wide range of optical transceivers, including: 100Mbps GLC-GE-100FX, 1GbE GLC-SX-SMD GLC-LH-SMD GLC-EX-SMD and copper 10/100/1000Mbps GLC-TE.
WS-C3850-24XU
This switch includes 24 Universal Power over Ethernet (UPOE) ports. 60 watts per port of power allows this switch to support a wide variety of endpoints with uninterrupted power without the need to have a power outlet at every subtending device location.
Backbone Switches
Catalyst 6807-XL Modular Switches will be used as the backbone in this example. This modular switch chassis itself can deliver up to 11.4 terabits per second (Tbps) of total system bandwidth, with up to 440 Gbps per slot. However, the current generation of available line cards support a maximum of 160 Gbps per slot. The switch is designed for high-availability with redundant supervisor engines and N+1 power supply redundancy as well as redundant fans.
The variety of core modules that must be equipped in the chassis including, Supervisory Engines, Power Supplies and Fans, will not be described in detail here. The 10GbE interface module selected is the C6800-16P10G-XL. This is a 16-port 10-Gigabit Ethernet Fiber module, each port of which may be equipped with a full range of SFP+ modules. In this example we will be equipping 10GBASE-LR SFP+ optical transceivers, specifically the SFP-10G-LR.
Optical Transceivers
Being a campus network, the links between Access and Backbone switches are invariably single mode fiber as the distances are simply too great to consider multimode, especially at rates of 10Gbps. Therefore, the optical transceiver selected in this example is a 10GBASE-LR type capable of 10Gbps transmission over distances up to 10km (6.2 miles) of standard single mode fiber.
In some campus environments, such as one including remote (e.g. cross town) branches, an access switch may be located in excess of 10km of the backbone switches. In such cases SFP-10G-ER may be used as it supports 10Gbps connectivity over single mode fiber links up to 40km (almost 25 miles).
Putting it All Together
In this idealized campus network, putting it all together is fairly straightforward. Of course, in real life, there are many considerations and trade-offs. Starting with the backbone switches, the two (or more Catalyst 6807-XL switches should be placed in separate locations, preferably in separate buildings for survivability reasons. Into each 6807-XL as sufficient number of C6800-16P10G-XL 16 port 10GbE modules are installed. Into each of the SFP+ slots a SFP-10G-LR SFP+ optical transceiver is inserted. As mentioned above, if there are any link to Access switches long than approximately 10 kilometers SFP-10G-ER may be used.
At selected locations around the campus the WS-C3850 switches are installed. In our description an 8-port 10GbE module is installed in the WS-C3850 stack. If more capacity is required, it is possible to arrange for additional network modules (2-port, 4-port or 8-port 10GbE) modules to be installed. If less capacity is required, a single 2-port or 4-port module could be used. If two backbone Catalyst 6807-XL switches are used, for high network availability half of the 10GbE connections from each Access WS-C3850 switch should home to one 6807-XL and half to the other. These two groups of 10GbE links should be physically routed in disparate paths to avoid unfortunate events like a digging accident from interrupting both groups of links. Using this approach will allow almost all single faults to do no more than reduce (by a maximum of 50%) the Access-Backbone capacity and not cause a complete outage at any site.
To complete the connectivity picture, a number of 40G or 100G links are implemented between the Catalyst 6807-XL switches. The backbone switches are not co-located, single-mode 40G or 100G transceivers are used, for example, the QSFP-40G-LR4 and QSFP-100G-LR4, respectively. The connections should connect each of these switches to all other backbone switches. This method completes the high-availability mesh architecture.
Platform Support for the Cisco SFP-10G-LR
Cisco 2360-48TD-S |
Cisco C6800IA-48FPD |
Cisco WS-C2960X-48TD-L |
Cisco 3100 WS-CBS3110X-S-I |
Cisco C6800IA-48FPDR |
Cisco WS-C2960XR-24PD-I |
Cisco 3100 WS-CBS3120X-S |
Cisco C6800IA-48TD |
Cisco WS-C2960XR-24TD-I |
Cisco 3100 WS-CBS3130X-S |
Cisco C6800-SUP6T |
Cisco WS-C2960XR-48FPD-I |
Cisco 4500 WS-X4013+10GE |
Cisco C6800-SUP6T-XL |
Cisco WS-C2960XR-48LPD-I |
Cisco 4500 WS-X4516-10GE |
Cisco CRS 40x10GE-WLO |
Cisco WS-C2960XR-48TD-I |
Cisco 4500 WS-X45-SUP6-E |
Cisco IE-5000-12S12P-10G |
Cisco WS-C3560CX-12PD-S |
Cisco 4500 WS-X45-SUP6L-E |
Cisco ME-3600X-24FS-M |
Cisco WS-C3560CX-8XPD-S |
Cisco 4500 WS-X45-SUP7-E |
Cisco ME-3600X-24TS-M |
Cisco WS-C3560E-12D |
Cisco 4500 WS-X45-SUP7L-E |
Cisco ME-3800X-24FS-M |
Cisco WS-C3560E-12SD |
Cisco 4500 WS-X45-SUP8-E |
Cisco N10-E0440 |
Cisco WS-C3560E-24PD |
Cisco 4500 WS-X45-SUP8L-E |
Cisco N10-E0600 |
Cisco WS-C3560E-24TD |
Cisco 4500 WS-X4606-X2-E |
Cisco N10-S6200 |
Cisco WS-C3560E-48PD |
Cisco 4500 WS-X4712-SFP+E |
Cisco N20-I6584 |
Cisco WS-C3560E-48PDF |
Cisco 4900 ME-4924-10GE |
Cisco Nexus 2000 N2K-2348UPQ |
Cisco WS-C3560E-48TD |
Cisco 4900 WS-C4928-10GE |
Cisco Nexus 2000 N2K-C2148T-1GE |
Cisco WS-C3560X-24P |
Cisco 4900 WS-C4948-10GE |
Cisco Nexus 2000 N2K-C2224TP-1GE |
Cisco WS-C3560X-24T |
Cisco 4900 WS-C4948E |
Cisco Nexus 2000 N2K-C2232PP-10GE |
Cisco WS-C3560X-48P |
Cisco 5700 AIR-CT5760-100-K9 |
Cisco Nexus 2000 N2K-C2232TM-10GE |
Cisco WS-C3560X-48PF |
Cisco 5700 AIR-CT5760-1K-K9 |
Cisco Nexus 2000 N2K-C2248TP-1GE |
Cisco WS-C3560X-48T |
Cisco 5700 AIR-CT5760-250-K9 |
Cisco Nexus 2000 N2K-C2248TP-E-1GE |
Cisco WS-C3650-24PD |
Cisco 5700 AIR-CT5760-25-K9 |
Cisco Nexus 3000 N3K-C3048 |
Cisco WS-C3650-24TD |
Cisco 5700 AIR-CT5760-500-K9 |
Cisco Nexus 3000 N3K-C3064PQ |
Cisco WS-C3650-48FD |
Cisco 5700 AIR-CT5760-50-K9 |
Cisco Nexus 3000 N3K-C3064PQ-10GE |
Cisco WS-C3650-48FQ |
Cisco 5700 AIR-CT5760-HA-K9 |
Cisco Nexus 3000 N3K-C3064X |
Cisco WS-C3650-48PD |
Cisco 6000 NC6-60X10GE-L-S |
Cisco Nexus 3000 N3K-C31128PQ-10GE |
Cisco WS-C3650-48PQ |
Cisco 6000 NC6-60X10GE-M-S |
Cisco Nexus 3000 N3K-C3132Q |
Cisco WS-C3650-48TD |
Cisco 6000 NCS-6008 |
Cisco Nexus 3000 N3k-C3132Q-X |
Cisco WS-C3650-48TQ |
Cisco 6500 VS-S2T-10G |
Cisco Nexus 3000 N3K-C3172PQ |
Cisco WS-C3750E-24PD |
Cisco 6500 VS-S2T-10G-XL |
Cisco Nexus 3000 N3K-C3548P-10G |
Cisco WS-C3750E-24TD |
Cisco 6500 VS-S720-10G-3C |
Cisco Nexus 4000 N4K-4001I-XPX |
Cisco WS-C3750E-48PD |
Cisco 6500 VS-S720-10G-3CXL |
Cisco Nexus 5000 N55-M16P |
Cisco WS-C3750E-48PDF |
Cisco 6500 WS-X6708-10G-3C |
Cisco Nexus 5000 N55-M16UP |
Cisco WS-C3750E-48TD |
Cisco 6500 WS-X6708-10G-3CXL |
Cisco Nexus 5000 N55-M8P8FP |
Cisco WS-C3750X-12S |
Cisco 6500 WS-X6716-10G-3C |
Cisco Nexus 5000 N5K- 56128UP |
Cisco WS-C3750X-24P |
Cisco 6500 WS-X6716-10G-3CXL |
Cisco Nexus 5000 N5K- 5672UP |
Cisco WS-C3750X-24S |
Cisco 6800 C6816-X-LE |
Cisco Nexus 5000 N5K-C5010P-BF |
Cisco WS-C3750X-24T |
Cisco 6800 C6824-X-LE-40G |
Cisco Nexus 5000 N5K-C5020P-BF |
Cisco WS-C3750X-48P |
Cisco 6800 C6832-X-LE |
Cisco Nexus 5000 N5K-C5548P-FA |
Cisco WS-C3750X-48PF |
Cisco 6800 C6840-X-LE-40G |
Cisco Nexus 5000 N5K-C5548UP-FA |
Cisco WS-C3750X-48T |
Cisco 6800 C6880-X |
Cisco Nexus 5000 N5K-C5596UP-FA |
Cisco WS-C3850-12S |
Cisco ASR 9000 A9K-16T/8-B |
Cisco Nexus 5000 N5K-M1404 |
Cisco WS-C3850-12XS |
Cisco ASR 9000 A9K-24X10GE-SE |
Cisco Nexus 5000 N5K-M1600 |
Cisco WS-C3850-16XS |
Cisco ASR 9000 A9K-24X10GE-TR |
Cisco Nexus 7000 N77-F248XP-23E |
Cisco WS-C3850-24P |
Cisco ASR 9000 A9K-36X10GE-SE |
Cisco Nexus 7000 N77-F348XP-23 |
Cisco WS-C3850-24S |
Cisco ASR 9000 A9K-36X10GE-TR |
Cisco Nexus 7000 N77-F348XP-25 |
Cisco WS-C3850-24T |
Cisco ASR 9000 A9K-4T16GE-SE |
Cisco Nexus 7000 N7K-F132XP-15 |
Cisco WS-C3850-24XS |
Cisco ASR 9000 A9K-4T16GE-TR |
Cisco Nexus 7000 N7K-F248XP-25 |
Cisco WS-C3850-32XS |
Cisco ASR 9000 A9K-MPA-8X10GE |
Cisco Nexus 7000 N7K-M108X2-12L |
Cisco WS-C3850-48F |
Cisco ASR 9000 A9K-RSP440-SE |
Cisco Nexus 7000 N7K-M132XP-12 |
Cisco WS-C3850-48P |
Cisco ASR 9000 A9K-RSP440-TR |
Cisco Nexus 7000 N7K-M132XP-12L |
Cisco WS-C3850-48T |
Cisco ASR 9000 A9K-RSP880-SE |
Cisco Nexus 9000 N9K-C92160YC-X |
Cisco WS-C3850-48XS |
Cisco ASR 9000 A9K-RSP880-TR |
Cisco Nexus 9000 N9K-C9372PX |
Cisco WS-C3850-48XS-E |
Cisco ASR 9000 ASR-9001 |
Cisco Nexus 9000 N9K-C9372PX-E |
Cisco WS-C3850-48XS-F-E |
Cisco ASR 9000 ASR-9900-RP-SE |
Cisco Nexus 9000 N9K-C9396PX |
Cisco WS-C3850-48XS-F-S |
Cisco ASR 9000 ASR-9900-RP-TR |
Cisco Nexus 9000 N9K-X9464PX |
Cisco WS-C3850-48XS-S |
Cisco ASR 9000 ASR-9922-RP-SE |
Cisco Nexus 9000 N9K-X9564PX |
Cisco WS-C4500X-16SFP+ |
Cisco ASR 9000 ASR-9922-RP-TR |
Cisco UCSB-5108-AC2 |
Cisco WS-C4500X-24X-ES |
Cisco ASR A901-6CZ-F-A |
Cisco UCS-FI-6248UP |
Cisco WS-C4500X-32SFP+ |
Cisco ASR A901-6CZ-F-D |
Cisco UCS-FI-6296UP |
Cisco WS-C4500X-40X-ES |
Cisco ASR A901-6-CZ-FT-A |
Cisco UCS-FI-6324UP |
Cisco WS-C4500X-F-16SFP+ |
Cisco ASR A901-6-CZ-FT-D |
Cisco UCS-FI-E16UP |
Cisco WS-C4500X-F-32SFP+ |
Cisco ASR9000v A9KV-V2-AC |
Cisco UCS-IOM-2204XP |
Cisco WS-C4900M |
Cisco ASR9000v A9KV-V2-DC-A |
Cisco UCS-IOM-2208XP |
Cisco WS-X4904-10GE |
Cisco ASR9000v A9KV-V2-DC-E |
Cisco WS-C2960S-24PD-L |
Cisco WS-X4908-10GE |
Cisco ASR-9000V-24-A |
Cisco WS-C2960S-24TD-L |
Cisco WS-X6816-10G-2T |
Cisco ASR-9000V-AC |
Cisco WS-C2960S-48FPD-L |
Cisco WS-X6816-10G-2TXL |
Cisco ASR-9000V-DC-A |
Cisco WS-C2960S-48LPD-L |
Cisco WS-X6904-40G-2T |
Cisco ASR-9000V-DC-E |
Cisco WS-C2960S-48TD-L |
Cisco WS-X6904-40G-2TXL |
Cisco C4KX-NM-8SFP+ |
Cisco WS-C2960X-24PD-L |
Cisco WS-X6908-10G-2T |
Cisco C6800-16P10G(-XL) |
Cisco WS-C2960X-24TD-L |
Cisco WS-X6908-10G-2TXL |
Cisco C6800-32P10G(-XL) |
Cisco WS-C2960X-48FPD-L |
|
Cisco C6800-8P10G(-XL) |
Cisco WS-C2960X-48LPD-L |
|